1. Write the sum $\sum_{i=1}^{4} \frac{i-3}{i}$ without sigma notation, then evaluate it.

Solution

$$
\frac{1-3}{1}+\frac{2-3}{2}+\frac{3-3}{3}+\frac{4-3}{4}=-2-\frac{1}{2}+0+\frac{1}{4}=-\frac{9}{4}
$$

2. Approximate the area under the graph of $f(x)=2 x^{2}$ and above the x-axis from $x=0$ to $x=4$ using $n=4$ and the following methods.
(a) Using left endpoints.

Solution

Since $n=4$ then $\Delta x=\frac{4-0}{4}=1$, thus the intervals are $[0,1],[1,2],[2,3],[3,4]$. Using left endpoints, the approximation is

$$
f(0) \cdot 1+f(1) \cdot 1+f(2) \cdot 1+f(3) \cdot 1=28
$$

(b) Using right endpoints.

Solution

Using the same intervals as above, we have the right endpoint approximation is:

$$
f(1)+f(2)+f(3)+f(4)=60
$$

(c) Using the midpoints.

Solution

Using the same intervals as above, we have the midpoint approximation is:

$$
f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{5}{2}\right)+f\left(\frac{7}{2}\right)=42
$$

3. Express the limit as a definite integral on the interval [2,5]. (Do not solve the integral).

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{x_{i}^{2}-2} \Delta x
$$

Solution

$$
\int_{2}^{5} \sqrt{x^{2}-2} d x
$$

4. Suppose that f and g are integrable. Find the integrals below using the following information:

$$
\int_{1}^{9} f(x) d x=-2, \quad \int_{7}^{9} f(x) d x=10, \int_{7}^{9} g(x) d x=3
$$

(a) $\int_{9}^{7}[f(x)-g(x)] d x$

Solution

$$
\begin{aligned}
\int_{9}^{7}[f(x)-g(x)] d x & =-\int_{7}^{9}[f(x)-g(x)] d x \\
& =-\left[\int_{7}^{9} f(x) d x-\int_{7}^{9} g(x) d x\right] \\
& =-\int_{7}^{9} f(x) d x+\int_{7}^{9} g(x) d x \\
& =-10+3=-7
\end{aligned}
$$

(b) $\int_{1}^{7} f(x) d x$

Solution

$$
\begin{aligned}
\int_{1}^{7} f(x) d x & =\int_{1}^{9} f(x) d x-\int_{7}^{9} f(x) d x \\
& =-2-3=-5
\end{aligned}
$$

(c) $\int_{7}^{9}[3 g(x)+2 f(x)] d x$

Solution

$$
\begin{aligned}
\int_{7}^{9}[3 g(x)+2 f(x)] d x & =3 \int_{7}^{9} g(x) d x+2 \int_{7}^{9} f(x) d x \\
& =3 \cdot 3+2 \cdot 10=29
\end{aligned}
$$

5. Evaluate the following integrals.
(a) $\int_{-2}^{2}\left(x^{3}-2 x+1\right) d x$

Solution

$$
\int_{-2}^{2}\left(x^{3}-2 x+1\right) d x=\int_{-2}^{2} x^{3} d x-\int_{-2}^{2} 2 x d x+\int_{-2}^{2} 1 d x
$$

Notice either by computing the Reimann sum or looking at a graph that $\int_{-2}^{2} x^{3} d x=0$ as well as $\int_{-2}^{2} 2 x d x=0$. Thus

$$
\begin{aligned}
\int_{-2}^{2}\left(x^{3}-2 x+1\right) d x & =\int_{-} 2^{2} 1 d x \\
& =\lim _{n \rightarrow \infty} \sum i=1^{n} 1 \cdot \frac{4}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum i=1^{n} 1 \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \cdot n \\
& =\lim _{n \rightarrow \infty} 4=4
\end{aligned}
$$

(b) $\int_{0}^{4}(3-2 x) d x$

Solution

$$
\begin{aligned}
\Delta x=\frac{4}{n} & =1 \quad x_{i}=0+\frac{4}{n} i=\frac{4 i}{n} \\
\int_{0}^{4}(3-2 x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(3-2\left(\frac{4 i}{n}\right)\right) \cdot \frac{4}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left(3-\frac{8 i}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left[\sum_{i=1}^{n} 3-\sum i=1^{n} \frac{8 i}{n}\right] \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left[3 n-\frac{8}{n} \sum i=1^{n} i\right] \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left[3 n-\frac{8}{n} \frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty} 12-\frac{16 n(n+1)}{n^{2}} \\
& =12-16=-4
\end{aligned}
$$

