1. Find the total area between the curves $y=x \sqrt{1-x^{2}}$ and $y=0$.
2. Sketch and find the area between the curves $y=\sqrt{x+2}, y=\frac{x+2}{3}$
3. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x-2}$, $y=0$ and $x=6$, about the x-axis.
4. Find the volume of the solid obtained by rotating the region bounded by $x=y^{2}$ and $x=3 y$ about the y-axis.
5. Find the volume of the solid obtained by rotating the region bounded by the curve $y=x^{3}$ and the lines $y=1$ and $x=2$ about $y=3$. (Hint: Draw the region and a typical disk or washer).
6. Find the volume of the solid obtained by rotating the region bounded by the curves $y=\sin x$ and $y=\cos x$ for $0 \leq x \leq \frac{\pi}{4}$ about the y-axis. (Hint: Draw the region and a typical disk or washer)
7. Find the volume of the solid obtained by rotating about the x -axis the region under the curve $y=\sqrt{x}$ from 0 to 1 . (Try using cylindrical shells!)
