1. Find the total area between the curves $y = x\sqrt{1-x^2}$ and y = 0.

2. Sketch and find the area between the curves $y = \sqrt{x+2}, \ y = \frac{x+2}{3}$

3. Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{x-2}$, y = 0 and x = 6, about the x - axis.

4. Find the volume of the solid obtained by rotating the region bounded by $x = y^2$ and x = 3y about the y-axis.

5. Find the volume of the solid obtained by rotating the region bounded by the curve $y = x^3$ and the lines y = 1 and x = 2 about y = 3. (Hint: Draw the region and a typical disk or washer).

6. Find the volume of the solid obtained by rotating the region bounded by the curves $y = \sin x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{4}$ about the *y*-axis. (Hint: Draw the region and a typical disk or washer)

7. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1. (Try using cylindrical shells!)