1. Find the total area between the curves $y=x \sqrt{1-x^{2}}$ and $y=0$.

Solution

First, notice the curves intersect at $x=0,1,-1$, so we are looking for the area between the curves from $x=-1$ to $x=0$ and then from $x=0$ to $x=-1$. Notice by graphing or otherwise that the area in each of those intervals is the same. ie.

$$
A=\int_{-1}^{0}-x \sqrt{1-x^{2}} d x+\int_{0}^{1} x \sqrt{1-x^{2}} d x=2 \int_{0}^{1} x \sqrt{1-x^{2}} d x
$$

Letting $u=1-x^{2}$ we have the following

$$
\begin{aligned}
A & =-\int_{1}^{0} u^{\frac{1}{2}} d u \\
& =\int_{0}^{1} u^{\frac{1}{2}} d u \\
& =\frac{2}{3}
\end{aligned}
$$

2. Sketch and find the area between the curves $y=\sqrt{x+2}, y=\frac{x+2}{3}$

Solution

Notice that the curves intersect at $x=-2$ and $x=7$, and during that interval $\sqrt{x+2}>\frac{x+2}{3}$. Thus, the area between the curves is give by the following:

$$
\begin{aligned}
A & =\int_{-2}^{7} \sqrt{x+2}-\frac{x+2}{3} d x \quad=\int_{0}^{9} \sqrt{u}-\frac{u}{3} d x \\
& \left.=\frac{2 u^{3 / 2}}{3}-\frac{u^{2}}{6}\right]_{0}^{9} \\
& =\frac{9}{2}
\end{aligned}
$$

3. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x-2}$, $y=0$ and $x=6$, about the $x-a x i s$.

Solution

When $y=0$ then $x=0$ so we are looking for $\int_{0}^{6} A(x) d x$ where $A(x)$ is the area of a cross section. Each cross section is a disk of radius $\sqrt{x-2}$, so $A(x)=\pi(x-2)$.

$$
\begin{aligned}
V & =\int_{0}^{6} \pi(x-2) d x \\
& =\left[\frac{\pi x^{2}}{2}-2 \pi x\right]_{0}^{6} \\
& =6 \pi
\end{aligned}
$$

4. Find the volume of the solid obtained by rotating the region bounded by $x=y^{2}$ and $x=3 y$ about the y-axis.

Solution

The curves intersect when $y=0$ and $y=3$, so we're looking for $\int_{0}^{3} A(y) d y$ where $A(y)$ is the area of the cross section for each y value. Each cross section is a washer with inner radius y^{3} and outer radius $3 y$, so $A(y)=\pi\left(9 y^{2}-y^{4}\right)$

$$
\begin{aligned}
\int_{0}^{3} A(y) d y & =\int_{0}^{3} \pi\left(9 y^{2}-y^{4}\right) d y \\
& =\pi \int_{0}^{3} 9 y^{2}-y^{4} d y \\
& =\pi\left[3 y^{3}-\frac{y^{5}}{5}\right]_{0}^{3} \\
& =\frac{162 \pi}{5}
\end{aligned}
$$

5. Find the volume of the solid obtained by rotating the region bounded by the curve $y=x^{3}$ and the lines $y=1$ and $x=2$ about $y=3$. (Hint: Draw the region and a typical disk or washer).

Solution

Ignore this question.
6. Find the volume of the solid obtained by rotating the region bounded by the curves $y=\sin x$ and $y=\cos x$ for $0 \leq x \leq \frac{\pi}{4}$ about the x-axis. (Hint: Draw the region and a typical disk or washer)

Solution

A cross section perpendicular to the x-axis is a washer of inner radius $\sin x$ and outer radius $\cos x$ and thus $A(x)=\pi\left(\cos ^{2} x-\sin ^{2} x\right)$. The volume of the solid is as follows:
(Note we will use double angle formula)

$$
\begin{aligned}
V & =\int_{0}^{\frac{\pi}{4}} \pi\left(\cos ^{2} x-\sin ^{2} x\right) d x \\
& =\int_{0}^{\frac{\pi}{4}} \pi \cos (2 x) d x \\
& =\pi \int_{0}^{\frac{\pi}{4}} \cos (2 x) d x
\end{aligned}
$$

Let $u=2 x$. Then $d u=2 d x$ and when $x=0, u=0$ and when $x=\frac{\pi}{4}, u=\frac{\pi}{2}$.

$$
\begin{aligned}
V & =\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \cos (u) d u \\
& \left.=\frac{\pi}{2} \sin (u)\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi}{2}\left(\sin \left(\frac{\pi}{2}\right)-\sin (0)\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

7. Find the volume of the solid obtained by rotating about the x -axis the region under the curve $y=\sqrt{x}$ from 0 to 1 . (Try using cylindrical shells!)

Solution

$$
\begin{aligned}
V & =\int_{0}^{1} \pi x d x \\
& \left.=\frac{\pi x^{2}}{2}\right]_{0}^{1} \\
& =\frac{\pi}{2}
\end{aligned}
$$

