1. Use the first part of the Fundamental Theorem of Calculus to find the derivatives of the following functions.

(a)
$$g(x) = \int_1^x \sin(3t^2)dt$$

(b)
$$h(x) = \int_{x}^{0} (u^{2} - u)^{3} du$$

(c)
$$R(x) = \int_1^{x^2} \sqrt{3 + t^2} dt$$

2. Evaluate the following integrals.

(a)
$$\int_{-6}^{3} \pi dt$$

(b)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \theta d\theta$$

(c)
$$\int_{-1}^{4} |2x - 3| dx$$

(d)
$$\int u^2 + \frac{u}{4} - 16du$$

(e)
$$\int 2 + \sec^2(\theta) d\theta$$

(f)
$$\int \sqrt{x^7} - \frac{1}{\sqrt{x}} dx$$

(g)
$$\int 4x\sqrt{1-x^2}dx$$

(h)
$$\int \sec(5\omega) \tan(5\omega) d\omega$$

(i)
$$\int_{-1}^{0} (3t-1)^{20} dt$$

(j)
$$\int x(2x+5)^8 dx$$

3. The velocity function in m/s is $v(t) = 3 - 4t + t^2$. Find the displacement and distance traveled by the particle during the interval $0 \le t \le 4$.