1. Write the sum $\sum_{i=1}^{4} \frac{i-3}{i}$ without sigma notation, then evaluate it.
2. Approximate the area under the graph of $f(x)=2 x^{2}$ and above the x-axis from $x=0$ to $x=4$ using $n=4$ and the following methods.
(a) Using left endpoints.
(b) Using right endpoints.
(c) Using the midpoints.
3. Express the limit as a definite integral on the interval [2,5]. (Do not solve the integral).

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{x_{i}^{2}-2} \Delta x
$$

4. Suppose that f and g are integrable. Find the integrals below using the following information:

$$
\int_{1}^{9} f(x) d x=-2, \quad \int_{7}^{9} f(x) d x=10, \int_{7}^{9} g(x) d x=3
$$

(a) $\int_{9}^{7}[f(x)-g(x)] d x$
(b) $\int_{1}^{7} f(x) d x$
(c) $\int_{7}^{9}[3 g(x)+2 f(x)] d x$
5. Evaluate the following integrals.
(a) $\int_{-2}^{2}\left(x^{3}-2 x+1\right) d x$
(b) $\int_{0}^{4}(3-2 x) d x$

