1. Let $f(x)=\cos (x)+2 \sin (x)+x^{2}$. Use Newtons method to approximate the root in the interval $[-1,0]$. Let $x_{1}=0$ and find x_{4}.
2. Approximate $\sqrt{13}$ correct up to 5 decimal places.
3. Consider the function $f(x)=x^{2}-3 x+1$. Let x_{1} be $0,1,2,4$. What is x_{2} in each situation? Can you estimate one root or two?
4. Find all anti-derivatives of the following functions.
(a) $f(t)=\frac{1}{\sqrt[3]{t}}$
(b) $f(x)=\pi \cos (x)+x^{5}$
(c) $f(x)=\sec ^{2}(x)+\sec (x) \tan (x)$
(d) $g(x)=\frac{2 x^{3}-\sqrt{x}}{2 x}$
5. Find $f(x)$ when $f^{\prime \prime}(x)=12 x-8, f^{\prime}(1)=4$, and $f(1)=3$.
6. Given that the graph of f passes through the point $(1,6)$ and that the slope of its tangent line at $(x, f(x)$ is $2-3 x$, find $f(1)$.
7. Find a function f such that $f^{\prime}(x)=3 x^{2}$ and the line $3 x-y=4$ is tangent to the graph of f.
