1. Let $f(x)=\cos (x)+2 \sin (x)+x^{2}$. Use Newtons method to approximate the root in the interval $[-1,0]$. Let $x_{1}=0$ and find x_{4}.

Solution

Recall that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$. Since $f^{\prime}(x)=-\sin (x)+2 \cos (x)+2 x$, then

$$
x_{n+1}=x_{n}-\frac{\cos (x)+2 \sin (x)+x^{2}}{-\sin (x)+2 \cos (x)+2 x}
$$

This gives us that

$$
\begin{gathered}
x_{2}=-0.5 \\
x_{3}=-0.6366699829 \\
x_{4}=-0.6586063411
\end{gathered}
$$

2. Approximate $\sqrt{13}$ correct up to 5 decimal places.

Solution

To approximate $\sqrt{13}$ we want to find the positive root of $x^{2}-13=0$. Let us make an initial guess of $x_{1}=3$. Then we have the following:

$$
\begin{aligned}
& x_{2}=\frac{10}{3} \equiv 3.666666666 \\
& x_{3} \equiv 3.606060606 \\
& x_{4} \equiv 3.605551312 \\
& x_{5} \equiv 3.605551275
\end{aligned}
$$

So up to 5 decimal places we have that $\sqrt{13}=3.60555$.
3. Consider the function $f(x)=x^{2}-3 x+1$. Let x_{1} be $1,2,3,4$. What is x_{2} in each situation? Which is the best first approximation?

Solution

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

x_{1}	x_{2}
1	0
2	3
3	$\frac{8}{3}$
4	3

1 and 3 are the best first approximations. They are approximating different roots.
4. Find all anti-derivatives of the following functions.
(a) $f(t)=\frac{1}{\sqrt[3]{t}}$

Solution

$f(t)=t^{-1 / 3}$ so if $F^{\prime}(t)=f(t)$ then $F(t)=\frac{t^{2 / 3}}{\frac{2}{3}}+C=\frac{3 t^{2 / 3}}{2}+C$ for some real number C.
(b) $f(x)=\pi \cos (x)+x^{5}$

Solution

If $F^{\prime}(t)=f(t)$ then $F(t)=\pi \sin (x)+\frac{x^{6}}{6}+C$ for some real number C.
(c) $f(x)=\sec ^{2}(x)+\sec (x) \tan (x)$

Solution

If $F^{\prime}(t)=f(t)$ then $F(t)=\tan (x)+\sec (x)+C$ for some real number C.
(d) $g(x)=\frac{2 x^{3}-\sqrt{x}}{2 x}$

Solution

$$
g(x)=\frac{2 x^{3}}{2 x}-\frac{\sqrt{x}}{2 x}=x^{2}-\frac{1}{2 \sqrt{x}} . \text { If } G^{\prime}(t)=g(t) \text { then } G(t)=\frac{x^{3}}{3}-\sqrt{x}+C .
$$

5. Find $f(x)$ when $f^{\prime \prime}(x)=12 x-8, f^{\prime}(1)=4$, and $f(1)=3$.

Solution

$$
f^{\prime}(x)=12 \cdot \frac{x^{2}}{2}-8 x+C=6 x^{2}+8 x+C_{1}
$$

Since $f^{\prime}(1)=4$, then $C_{1}=6$, so

$$
\begin{gathered}
f^{\prime}(x)=6 x^{2}-8 x+6 \\
f(x)=6 \cdot \frac{x^{3}}{3}-8 \cdot \frac{x^{2}}{2}+6 x+C_{2}=2 x^{3}-4 x^{2}+6 x+C_{2}
\end{gathered}
$$

Since $f(1)=3$, then $C_{2}=-1$, so

$$
f(x)=2 x^{3}-4 x^{2}+6 x-1
$$

6. Given that the graph of f passes through the point $(1,6)$ and that the slope of its tangent line at $(x, f(x)$ is $2-3 x$, find $f(1)$.

Solution

Since the slope of the tangent line at a point is $2-3 x$ then $f^{\prime}(x)=2-3 x$. This implies that $f(x)=2 x-\frac{3}{2} x^{2}+C$. Since $f(1)=6$, then $c=\frac{-1}{2}$, so $f(x)=2 x-\frac{3}{2} x^{2}-\frac{1}{2}$
7. Find a function f such that $f^{\prime}(x)=3 x^{2}$ and the line $3 x-y=4$ is tangent to the graph of f.

Solution

The slope of the line $3 x-y=4$ is 3 . $f^{\prime}(x)=3$ when $x= \pm 1$.
If $x=1$, then the tangent line intersects the curve at $(1,-1)$, so $f(1)=-1$. The antiderivative of $f^{\prime}(x)$ is $f(x)=x^{3}+c$, so c must be -2 .

$$
f(x)=x^{3}-2
$$

If $x=-1$, then the tangent line intersects the curve at $(-1,-7)$, so $f(-1)=-7$. The antiderivative of $f^{\prime}(x)$ is $f(x)=x^{3}+c$, so c must be -6 .

$$
f(x)=x^{3}-6
$$

