1. Let $f(x) = \cos(x) + 2\sin(x) + x^2$. Use Newtons method to approximate the root in the interval [-1,0]. Let $x_1 = 0$ and find x_4 .

Solution

Recall that $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Since $f'(x) = -\sin(x) + 2\cos(x) + 2x$, then

$$x_{n+1} = x_n - \frac{\cos(x) + 2\sin(x) + x^2}{-\sin(x) + 2\cos(x) + 2x}$$

This gives us that

$$x_2 = -0.5$$

$$x_3 = -0.6366699829$$

$$x_4 = -0.6586063411$$

2. Approximate $\sqrt{13}$ correct up to 5 decimal places.

Solution

To approximate $\sqrt{13}$ we want to find the positive root of $x^2 - 13 = 0$. Let us make an initial guess of $x_1 = 3$. Then we have the following:

$$x_2 = \frac{10}{3} \equiv 3.666666666$$

 $x_3 \equiv 3.606060606$

 $x_4 \equiv 3.605551312$

 $x_5 \equiv 3.605551275$

So up to 5 decimal places we have that $\sqrt{13} = 3.60555$.

3. Consider the function $f(x) = x^2 - 3x + 1$. Let x_1 be 1, 2, 3, 4. What is x_2 in each situation? Which is the best first approximation?

Solution

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

x_1	x_2
1	0
2	3
3	$\frac{8}{3}$
4	$\check{3}$

1 and 3 are the best first approximations. They are approximating different roots.

4. Find all anti-derivatives of the following functions.

(a)
$$f(t) = \frac{1}{\sqrt[3]{t}}$$

Solution

 $f(t)=t^{-1/3}$ so if F'(t)=f(t) then $F(t)=\frac{t^{2/3}}{\frac{2}{3}}+C=\frac{3t^{2/3}}{2}+C$ for some real number C.

(b)
$$f(x) = \pi \cos(x) + x^5$$

Solution

If F'(t) = f(t) then $F(t) = \pi \sin(x) + \frac{x^6}{6} + C$ for some real number C.

(c)
$$f(x) = \sec^2(x) + \sec(x)\tan(x)$$

Solution

If F'(t) = f(t) then $F(t) = \tan(x) + \sec(x) + C$ for some real number C.

(d)
$$g(x) = \frac{2x^3 - \sqrt{x}}{2x}$$

Solution

$$g(x) = \frac{2x^3}{2x} - \frac{\sqrt{x}}{2x} = x^2 - \frac{1}{2\sqrt{x}}$$
. If $G'(t) = g(t)$ then $G(t) = \frac{x^3}{3} - \sqrt{x} + C$.

5. Find f(x) when f''(x) = 12x - 8, f'(1) = 4, and f(1) = 3.

Solution

$$f'(x) = 12 \cdot \frac{x^2}{2} - 8x + C = 6x^2 + 8x + C_1$$

Since f'(1) = 4, then $C_1 = 6$, so

$$f'(x) = 6x^2 - 8x + 6$$

$$f(x) = 6 \cdot \frac{x^3}{3} - 8 \cdot \frac{x^2}{2} + 6x + C_2 = 2x^3 - 4x^2 + 6x + C_2$$

Since f(1) = 3, then $C_2 = -1$, so

$$f(x) = 2x^3 - 4x^2 + 6x - 1$$

6. Given that the graph of f passes through the point (1,6) and that the slope of its tangent line at (x, f(x)) is 2 - 3x, find f(1).

Solution

Since the slope of the tangent line at a point is 2-3x then f'(x)=2-3x. This implies that $f(x)=2x-\frac{3}{2}x^2+C$. Since f(1)=6, then $c=\frac{-1}{2}$, so $f(x)=2x-\frac{3}{2}x^2-\frac{1}{2}$

7. Find a function f such that $f'(x) = 3x^2$ and the line 3x - y = 4 is tangent to the graph of f.

Solution

The slope of the line 3x - y = 4 is 3. f'(x) = 3 when $x = \pm 1$. If x = 1, then the tangent line intersects the curve at (1, -1), so f(1) = -1. The antiderivative of f'(x) is $f(x) = x^3 + c$, so c must be -2.

$$f(x) = x^3 - 2$$

If x = -1, then the tangent line intersects the curve at (-1, -7), so f(-1) = -7. The antiderivative of f'(x) is $f(x) = x^3 + c$, so c must be -6.

$$f(x) = x^3 - 6$$