1. Consider the function $f(x)=x^{4}-x^{2}$.

- Find the domain of f.
- Find the x and y intercepts of the graph of $f(x)$.
- Determine symmetry.
- Find all asymptotes.
- Determine when f is increasing and decreasing.
- Determine the concavity of f.
- Sketch the curve $y=f(x)$.

2. Consider the function $f(x)=\frac{x}{\sqrt{x^{2}+1}}$

- Find the domain of f.
- Find the x and y intercepts of the graph of $f(x)$.
- Determine symmetry.
- Find all asymptotes.
- Determine when f is increasing and decreasing.
- Determine the concavity of f.
- Sketch the curve $y=f(x)$.

3. The curve of $f(x)=\frac{x^{3}+2 x^{2}-4}{x^{2}+2}$ has a slant asymptote. Find the slant asymptote.
4. The sum of two positive numbers is 16. Find the smallest possible value of the sum of their squares.
5. A rectangle is bounded by the x - and y -axes and the graph of $y=5-\frac{1}{2} x$. What length and width should the rectangle have so that its area is a maximum?
6. An open box with a rectangular base is to be constructed from a 16 in . by 21 in . piece of cardboard by cutting out squares from each corner and bending up the sides. Find the dimensions of the box that will have the largest volume.
