1. Consider the function $f(x)=x^{4}-x^{2}$.

- Find the domain of f.

Solution

f is a polynomial so the domain is $(-\infty, \infty)$.

- Find the x and y intercepts of the graph of $f(x)$.

Solution

x-int: $0=x^{4}-x^{2}=x^{2}(x+1)(x-1)$, so $x=0,-1,1$
y-int: $f(0)=0$ so $y=0$

- Determine symmetry.

Solution

$f(x)=f(-x)$ so f is even, and thus symmetric with respect to the y-axis.

- Find all asymptotes.

Solution

None

- Determine when f is increasing and decreasing.

Solution

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-2 x \\
0 & =2 x\left(2 x^{2}-1\right) \\
x & =0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}} .
\end{aligned}
$$

We can test values outside and in between these values to determine the intervals in which f is increasing or decreasing. Decreasing: $\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(0, \frac{1}{\sqrt{2}}\right)$
Increasing: $\left(-\frac{1}{\sqrt{2}}, 0\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$

- Determine the concavity of f.

Solution

$$
\begin{array}{r}
f^{\prime \prime}(x)=12 x^{2}-2 \\
0=12 x^{2}-2 \\
\quad \pm \frac{1}{\sqrt{6}}=x
\end{array}
$$

Concave up: $\left(-\infty,-\frac{1}{\sqrt{6}}\right) \cup\left(\frac{1}{\sqrt{6}}, \infty\right)$
Concave down: $\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

- Sketch the curve $y=f(x)$.

2. Consider the function $f(x)=\frac{x}{\sqrt{x^{2}+1}}$

- Find the domain of f.

Solution

$$
(-\infty, \infty)
$$

- Find the x and y intercepts of the graph of $f(x)$.

Solution

x-int: $x=0$
y-int: $f(0)=0$, so $y=0$

- Determine symmetry.

Solution

$f(-x)=-f(x)$ so f is odd, and thus symmetric with respect to the origin.

- Find all asymptotes.

Solution

Since the denominator is never 0 , there are no vertical asymptotes. For the horizontal asymptote, we will take the limit as x approaches $\pm \infty$. Recall that if x is positive, $x=\sqrt{x^{2}}$, and if x is negative, $x=-\sqrt{x^{2}}$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}} & =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\frac{\sqrt{x^{2}+1}}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\frac{\sqrt{x^{2}+1}}{\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}+1}{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}} \\
& =\frac{1}{\sqrt{\lim _{x \rightarrow \infty} 1+\frac{1}{x^{2}}}} \\
& =\frac{1}{\sqrt{1}} \\
& =1
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}=\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{1}{\frac{\sqrt{x^{2}+1}}{x}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{1}{\frac{x}{\sqrt{x^{2}+1}}} \frac{\sqrt{x^{2}}}{}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{\frac{x^{2}+1}{x^{2}}}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{1+\frac{1}{x^{2}}}}
$$

$$
=\frac{1}{-\sqrt{\lim _{x \rightarrow \infty} 1+\frac{1}{x^{2}}}}
$$

$$
=-1
$$

So there are horizontal asymptotes at $y= \pm 1$.

- Determine when f is increasing and decreasing.

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sqrt{x^{2}+1}-2 x^{2}\left(\frac{1}{2 \sqrt{x^{2}+1}}\right)}{x^{2}+1} \\
& =\frac{\sqrt{x^{2}+1}-\frac{x^{2}}{\sqrt{x^{2}+1}}}{x^{2}+1} \\
& =\frac{\sqrt{x^{2}+1}-\frac{x^{2}}{\sqrt{x^{2}+1}}}{x^{2}+1} \cdot \frac{\sqrt{x^{2}+1}}{\sqrt{x^{1}+1}} \\
& =\frac{x^{2}+1-x^{2}}{\left(x^{2}+1\right)^{3 / 2}} \\
& =\frac{1}{\left(x^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

$f^{\prime}(x)$ is never 0 and is always positive, so f is always increasing.

- Determine the concavity of f.

Solution

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\frac{3}{2}\left(x^{2}+1\right)^{-5 / 2}(2 x) \\
& =\frac{-3 x}{\left(x^{2}+1\right)^{5 / 2}}
\end{aligned}
$$

So $f^{\prime \prime}(x)=0$ when $x=0$. We can test positive and negative values to determine concavity. Concave up: $(-\infty, 0)$
Concave down: $(0, \infty)$

- Sketch the curve $y=f(x)$.

3. The curve of $f(x)=\frac{x^{3}+2 x^{2}-4}{x^{2}+2}$ has a slant asymptote. Find the slant asymptote.

Solution

Doing polynomial division we can see that

$$
f(x)=x+2-\frac{2 x+8}{x^{2}+2}
$$

, so there is a slant asymptote at $x+2$ since as x approaches $\pm \infty,-\frac{2 x+8}{x^{2}+2}$ approaches 0 .
4. The sum of two positive numbers is 16 . Find the smallest possible value of the sum of their squares.

Solution

Let a and b be the two numbers such that $a+b=16$. If $S=a^{2}+b^{2}$, then we want to find the minimum value of S. Let us substitute $b=16-a$, and find the critical numbers of S.

$$
\begin{aligned}
S(a) & =a^{2}+(16-a)^{2} \\
S(a) & =2 a^{2}-32 a+256 \\
S^{\prime}(a) & =4 a-32 \\
0 & =4 a-32 \\
a & =8
\end{aligned}
$$

Since $S^{\prime}(a)<0$ when $a<8$ and $S^{\prime}(a)>0$ when $a>8$ then the absolute minimum value of S must be when $a=8$. Since $S^{\prime}(8)=32$, the minimum possible sum of the squares is 32 .
5. A rectangle is bounded by the x - and y-axes and the graph of $y=5-\frac{1}{2} x$. What length and width should the rectangle have so that its area is a maximum?

Solution

If the length of such a rectangle is x, then the width is y where $y=5-\frac{1}{2} x$. Thus the area of the rectangle is given by the equation $A(x)=x\left(5-\frac{1}{2} x\right)$. We should find the critical numbers to determine any absolute maximums.

$$
\begin{aligned}
& A^{\prime}(x)=5-x \\
0= & 5-x \\
& x=5
\end{aligned}
$$

Since $A^{\prime}(x)$ is positive for $x<5$ and negative for $x>5$ then there must be an absolute maximum when $x=5$. The length of rectangle at this maximum area is 5 and the width must be $\frac{5}{2}$.
6. An open box with a rectangular base is to be constructed from a 16 in . by 21 in . piece of cardboard by cutting out squares from each corner and bending up the sides. Find the dimensions of the box that will have the largest volume.

Solution

Let x represent the side length of the square cut out at each corner. Then the height of the box is x, the width is $21-2 x$ and the length is $16-2 x$. Notice that $0<x<8$, otherwise it wouldnt be a box. The volume is thus representated by the equation $V(x)=x(21-2 x)(16-2 x)$. We want to find the critical numbers to determine the absolute maximum value.

$$
V^{\prime}(x)=12 x^{2}-148 x+336=4(x-3)(3 x-28)
$$

So we can see the critical numbers are at $x=3$ and $x=\frac{28}{3}$, however, since $x<8$, then we only need to consider $x=3$. Since $V^{\prime}(1)>0$ and $V^{\prime}(4)<0$ then there must be a absolute maximum of V at $x=3$. Thus, the dimensions of the box that has the largest volume is 10 in by 15 in by 3 in.

