1. Sketch the graph of a function on $[-3,3]$ that has an absolute maximum but no local maximum.
2. Sketch the graph of a function on $[-3,3]$ that has an local minimum but no absolute minimum .
3. Find the critical numbers of the following functions.
(a) $f(x)=\sqrt{x}\left(x^{2}-3 x\right)$
(b) $f(x)=2 x^{3}-3 x^{2}-36 x$
(c) $f(\theta)=2 \cos \theta+\sin ^{2} \theta$
4. Find the absolute maximum and absolute minimum values of f on the given interval.
(a) $f(x)=\left(t^{2}-4\right)^{3},[-2,3]$
(b) $f(x)=\frac{x}{x^{2}-x+1}$
5. Verify that the function satisfies the 3 hypotheses of Rolle's theorem on the given interval. Then, find all numbers c that satisfy the conclusion of Rolle's Theorem.

$$
f(x)=\sin (x / 2),[-\pi / 2,3 \pi / 2]
$$

6. Very that the function satisfies the hypothesis of the Mean Value Theorem on the given interval, and then fund all numbers c that satisfy the conclusion of the Mean Value Theorem.

$$
3 x^{2}-4 x+1,[0,2]
$$

7. Show that a polynomial of degree 3 has at most 3 real roots.
8. Suppose that $f^{\prime}(x) \leq 2$ for all x in $[1,5]$. If $f(5)=10$ whats the largest $f(1)$ could be?
9. Bonus: A number a is called a fixed point of a function f is $f(a)=a$. Prove that if $f^{\prime}(x) \neq 1$ for all real numbers x then f has at most one fixed points.
