1. Sketch the graph of a function on $[-3,3]$ that has an absolute maximum but no local maximum.

Answers may vary. It should have a maximum value as an end point and either never be increasing or never be decreasing.
2. Sketch the graph of a function on $[-3,3]$ that has an local minimum but no absolute minimum .

Answers may vary. It should have a discontinuity, and the function should be sometimes increasing and sometimes decreasing.
3. Find the critical numbers of the following functions.
(a) $f(x)=\sqrt{x}\left(x^{2}-3 x\right)$

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2 \sqrt{x}}\left(x^{2}-3 x\right)+\sqrt{x}(2 x-3) \\
& =\frac{x^{2}-3 x}{2 \sqrt{x}}+\frac{2 x(2 x-3)}{2 \sqrt{x}} \\
& =\frac{5 x^{2}-9 x}{2 \sqrt{x}}
\end{aligned}
$$

Notice that f is undefined at $x=0$, so 0 is a critical point. Furthermore, $f^{\prime}\left(\frac{9}{5}\right)=0$. Thus our critical numbers are $x=\left\{0, \frac{9}{5}\right\}$.
(b) $f(x)=2 x^{3}-3 x^{2}-36 x$

Solution

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-6 x-36 \\
& =6\left(x^{2}-x-6\right) \\
& =6(x-3)(x+2)
\end{aligned}
$$

So $f^{\prime}(x)=0$ when $x=3$ and $x=-2$. Since $f^{\prime}(x)$ is defined everywhere then our only critical numbers are $\{-2,3\}$.
(c) $f(\theta)=2 \cos \theta+\sin ^{2} \theta$

Solution

$$
\begin{aligned}
f^{\prime}(\theta) & =-2 \sin \theta+2 \sin \theta \cdot \cos \theta \\
& =(2 \sin \theta)(-1+\cos \theta)
\end{aligned}
$$

$f^{\prime}(\theta)=0$ when $\sin \theta=0$ or $\cos \theta=1$.
$\sin \theta=0$ when $\theta=\pi n$ for any integer n.
$\cos \theta=1$ when $\theta=2 \pi n$ for any integer n..
The function is differentiable everywhere, hence the critical numbers of f are $\theta=\pi n$ where n is an integer.
4. Find the absolute maximum and absolute minimum values of f on the given interval.
(a) $f(t)=\left(t^{2}-4\right)^{3},[-2,3]$

Solution

We need to evaluate f at the critical numbers in the interval and end points to determine the global extrema. Critical numbers: Notice f is differentiable everywhere so we only need to consider values where the derivative is 0 .

$$
\begin{aligned}
f^{\prime}(t) & =0 \\
0 & =3\left(t^{2}-4\right)^{2} \cdot(2 t) \\
0 & =6 t\left(t^{2}-4\right)^{2} \\
t & =\{0,2,-2\} \\
f(-2)=0 \quad f(0) & =-64 \quad f(2)=0 \quad f(3)=125
\end{aligned}
$$

Absolute Maximum of 125 at $t=3$
Absolute Minimum of -64 at $t=-2$
(b) $f(x)=\frac{x}{x^{2}-x+1} \quad[-2,2]$

Solution

We need to evaluate f at the critical numbers in the interval and end points to determine the global extrema. Critical numbers: Notice f is differentiable everywhere so we only need to consider values where the derivative is 0 .

$$
\begin{aligned}
& 0=f^{\prime}(x) \\
& 0=\frac{\left(x^{2}-x+1\right)^{2}-x(2 x-1)}{\left(x^{2}-x+1\right)^{2}} \\
& 0=\frac{-x^{2}+1}{\left(x^{2}-x+1\right)^{2}} \\
& 0=\frac{(1-x)(1+x)}{\left(x^{2}-x+1\right)^{2}} \\
& x=\{-1,1\} \\
& f(-1)=-\frac{1}{3} \quad f(1)=1 \quad f(-2)=-\frac{2}{7} \quad f(2)=\frac{2}{3}
\end{aligned}
$$

Absolute Maximum of 1 at $x=1$
Absolute Minimum of $-\frac{1}{3}$ at $x=-1$
5. Verify that the function satisfies the 3 hypotheses of Rolle's theorem on the given interval. Then, find all numbers c that satisfy the conclusion of Rolle's Theorem.

$$
f(x)=\sin (x / 2),[-\pi / 2,3 \pi / 2]
$$

Solution

First, $\sin (x)$ is continuous and differentiable everywhere. Furthermore, $f(-\pi / 2)=-\frac{\sqrt{2}}{2}=f(3 \pi / 2)$, so f satisfies the the hypotheses of Rolles theorem, therefore, there exists a c in the interval such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
f^{\prime}(c) & =00 \\
0 & =\frac{\cos (c / 3)}{2} \\
\frac{c}{2} & =\frac{\pi}{2}+n \pi \\
c & =\pi+n \pi \\
c & =\pi
\end{aligned}
$$

(since it must be in the interval)
6. Very that the function satisfies the hypothesis of the Mean Value Theorem on the given interval, and then fund all numbers c that satisfy the conclusion of the Mean Value Theorem.

$$
f(x)=3 x^{2}-4 x+1,[0,2]
$$

Solution

Since f is a polynomial then it is continuous and differentiable everywhere, thus by the MVT we have that $f^{\prime}(c)=\frac{f(2)-f(0}{2-0}$ for some c in the interval $[0,2]$.

$$
\begin{array}{rlrl}
f^{\prime}(c) & =\frac{5-1}{2} 6 c-4 & =\frac{4}{2} \\
c & =1
\end{array}
$$

7. Show that a polynomial of degree 3 has at most 3 real roots.

Solution

Suppose f is a degree 3 polynomial and has 4 real roots. We wish to show that there would be a contradiction. Let the roots be $a_{1}, a_{2}, a_{3}, a_{4}$. Since f is polynomial, it is differentiable and continuous everywhere. We can apply Rolles theorem to the intervals $\left[a_{1}, a_{2}\right],\left[a_{2}, a_{3}\right],\left[a_{3}, a_{4}\right]$, giving us 3 distinct points at which the derivative is 0 . However, the derivative of a cubic polynomial is a degree 2 polynomial, which has only 2 roots, giving us a contradiction. Hence, a degree 3 polynomial can have at most 3 real roots.
8. Suppose that $f^{\prime}(x) \leq 2$ for all x in $[1,5]$. If $f(5)=10$ whats the largest $f(1)$ could be?

Solution

Since we say that $f^{\prime}(x) \leq 2$ for all x, then f must be differentiable everywhere, hence continuous everywhere. By MVT there must exist some c in $[1,5]$ such that

$$
f^{\prime}(c)=\frac{f(5)-f(1)}{5-(1)}=\frac{f(5)-10}{4}
$$

So $f(5)=4 f^{\prime}(c)+10 \leq 4(2)+10=18$. So $f(5)$ can be no larger than 18 .
9. Bonus: A number a is called a fixed point of a function f is $f(a)=a$. Prove that if $f^{\prime}(x) \neq 1$, and $f^{\prime}(x)$ exists for all for all real numbers x then f has at most one fixed points.

Solution

Proof. Suppose that $f(a)=a$ and $f(b)=b$ for $a<b$. Since f is differentiable everywhere then we can use the mean value theorem to say that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=1$ for some c in $[a, b]$. However, this is a contradiction since $f^{\prime}(x) \neq 1$ so it must be that f cannot have a fixed point.

