- 1. Find the following derivatives for the function $f(x) = (x^2 2x)^3$.
 - (a) f'(x)
 - (b) f''(x)
 - (c) f'(0)
 - (d) f''(0)
- 2. Find the following derivatives for the function f(x) = 3 sin(x)
 (a) f'(x)
 - (b) f''(x)
 - (c) $f^{(11)}(x)$
 - (d) $f^{(20)}(x)$
- 3. Find the derivatives of the following functions.

(a)
$$f(x) = \sqrt{\cos(2x) + \sin(2x)}$$

(b)
$$G(x) = \left(\frac{3x-1}{2x^2-1}\right)^3$$

(c)
$$y = x^{-3} \sec(x)$$

4. For two functions f, g we have the following values. Find the derivatives $\frac{x | f(x) | f'(x) | g(x) | g'(x) |}{-3 | 1 | 2 | 7 | 0}$

-3	1	2	7	0
2	5	2	-6	-1
5	$\frac{1}{2}$	7	-3	4
(a) $(f \circ g)'(x)$				

(b) (fg)'(x)

(c)
$$\left(\frac{f}{g}\right)'(x)$$

- 5. Find the equation of the tangent line to the curve $y = (1 + x^2)\sin(2x)$ at the point (0, 1)
- 6. Find the following limit.

$$\lim_{x \to 3} \frac{\sin(x-3)}{x^2 - 4x + 3}$$

7. Find $\frac{dy}{dx}$ for the curve $y^2 + (x-2)^2 = 20$ at the point (4, -4)