Goal: complete the following problems without using notes or calculators.

1. Calculate the following limits.

(a)
$$\lim_{x \to 0} \frac{\sqrt{3x+4-2}}{x}$$
Solution
$$\lim_{x \to 0} \frac{\sqrt{3x+4}-2}{x} = \lim_{x \to 0} \frac{\sqrt{3x+4}-2}{x} \cdot \frac{\sqrt{3x+4}+2}{\sqrt{3x+4}+2}$$

$$= \lim_{x \to 0} \frac{3x+4-4}{x(\sqrt{3x+4}+2)}$$

$$= \lim_{x \to 0} \frac{3x}{x(\sqrt{3x+4}+2)}$$

$$= \lim_{x \to 0} \frac{3}{(\sqrt{3x+4}+2)}$$

$$= \frac{3}{(\sqrt{3(0)+4}+2)}$$

$$= \frac{3}{4}$$
(b)
$$\lim_{x \to 3} \left(\frac{\sin(3-x)}{x-3} + \frac{3x^2+x-2}{x+1}\right)$$
Solution
$$\lim_{x \to 3} \left(\frac{\sin(3-x)}{x-3} + \frac{3x^2+x-2}{x+1}\right) = \lim_{x \to 3} \frac{\sin(3-x)}{x-3} + \lim_{x \to 3} \frac{3x^2+x-2}{x+1}$$

$$= \left(\lim_{x \to 3} \frac{\sin(3)}{x-3} + \frac{3x^2+x-2}{x+1}\right)$$

(b)
$$\lim_{x \to 3} \left(\frac{\sin(3-x)}{x-3} + \frac{3x^2 + x - 2}{x+1} \right)$$

$$\lim_{x \to 3} \left(\frac{\sin(3-x)}{x-3} + \frac{3x^2 + x - 2}{x+1} \right) = \lim_{x \to 3} \frac{\sin(3-x)}{x-3} + \lim_{x \to 3} \frac{3x^2 + x - 2}{x+1}$$
$$= \left(\lim_{w \to 0} \frac{\sin(w)}{-w} \right) + \frac{3(3)^2 + 3 - 2}{3+1}$$
$$= -\left(\lim_{w \to 0} \frac{\sin(w)}{w} \right) + \frac{28}{4}$$
$$= -1 + 7$$
$$= 6$$

(c) $\lim_{x \to 0} 3x^2 \cos(\frac{2}{x})$

Solution
$-1 \le \cos(\frac{2}{x}) \le 1$
$-x^2 \le x^2 \cos(\frac{2}{x}) \le x^2$
$-3x^2 \le 3x^2 \cos(\frac{2}{x}) \le 3x^2$
Since $\lim_{x\to 0} -3x^2 = 0 = \lim_{x\to 0} 3x^2$, then by the Squeeze theorem, since
$\lim_{x \to 0} 3x^2 \cos(\frac{2}{x}) = 0$

(d) $\lim_{x \to 3^{-}} \frac{|x-3|}{x-3}$

Solution

As x is approaching 3 from the left, then x - 3 < 0 so |x - 3| = -(x - 3). $\lim_{x \to 3^{-}} \frac{|x - 3|}{x - 3} = \lim_{x \to 3^{-}} \frac{-(x - 3)}{x - 3}$ $= \lim_{x \to 3^{-}} -1$ = -1

(e) $\lim_{x \to 0} \frac{\sin(3x)}{4x}$

Solution $\lim_{x \to 0} \frac{\sin(3x)}{4x} = \lim_{x \to 0} \frac{\sin(3x)}{4x} \cdot \frac{3}{4}$ $= \frac{3}{4} \lim_{x \to 0} \frac{\sin(3x)}{3x}$ $= \frac{3}{4} \cdot 1 = \frac{3}{4}$

(f)
$$\lim_{x \to \infty} \frac{\cos(2x)-1}{3x}$$

Solution $x \to 0$	
	(2) 1 (2) 1 $\frac{2}{3}$
	$\lim_{x \to 0} \frac{\cos(2x) - 1}{3x} = \lim_{x \to 0} \frac{\cos(2x) - 1}{3x} \cdot \frac{\frac{1}{3}}{\frac{2}{3}}$
	$=\frac{2}{2}\lim_{x\to\infty}\frac{\cos(2x)-1}{2}$
	$= \frac{3}{2} \cdot 0$
	$= \frac{3}{3}$ 0 = 0
	U U

- 2. Use the definition of the derivative to find the derivatives of the following functions.
 - (a) $f(x) = 3x^2 2x + 10$ Solution $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 2(x+h) + 10 - (3x^2 - 2x + 10)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 2x - 2h + 10 - 3x^2 + 2x - 10)}{h}$ $=\lim_{h\to 0}\frac{6xh+3h^2-2h)}{h}$ $=\lim_{h\to 0} 6x + 3h - 2$ f'(x) = 6x - 2

(b) $g(x) = \sqrt{3x - 5}$

Solution

$$g'(x) = \lim_{h \to 0} \frac{\sqrt{3(x+h) - 5} - \sqrt{3x - 5}}{h}$$

=
$$\lim_{h \to 0} \frac{\sqrt{3x + 3h - 5} - \sqrt{3x - 5}}{h} \cdot \frac{\sqrt{3x + 3h - 5} + \sqrt{3x - 5}}{\sqrt{3x + 3h - 5} + \sqrt{3x - 5}}$$

=
$$\lim_{h \to 0} \frac{(3x + 3h - 5) - (3x - 5)}{h(\sqrt{3x + 3h - 5} + \sqrt{3x - 5})}$$

=
$$\lim_{h \to 0} \frac{3h}{h(\sqrt{3x + 3h - 5} + \sqrt{3x - 5})}$$

=
$$\lim_{h \to 0} \frac{3}{(\sqrt{3x + 3h - 5} + \sqrt{3x - 5})}$$

=
$$\frac{3}{2\sqrt{3x - 5}}$$

(c) $h(x) = \frac{1}{t^2}$

Solution

$$h'(x) = \lim_{h \to 0} \frac{\frac{1}{(t+h)^2} - \frac{1}{t^2}}{h}$$

$$h'(x) = \lim_{h \to 0} \frac{\frac{1}{(t+h)^2} - \frac{1}{t^2}}{h} \cdot \frac{(t+h)^2 t^2}{(t+h)^2 t^2}$$

$$= \lim_{h \to 0} \frac{t^2 - (t+h)^2}{h(t+h)^2 t^2}$$

$$= \lim_{h \to 0} \frac{-2th + h^2}{h(t+h)^2 t^2}$$

$$= \lim_{h \to 0} \frac{-2t + h}{(t+h)^2 t^2}$$

$$= \frac{-2t}{t^4}$$

$$h'(x) = \frac{-2}{t^3}$$

3. If possible, find the equation of the tangent line to the above curves when x = 1.

Solution

- (a) f(1) = 11, and f'(1) = 4. In point-slope form, the tangent line is y 11 = 4(x 1), or in slope-intercept form, y = 4x + 7.
- (b) 1 is not in the domain of g so there is no tangent line.
- (c) h(1) = 1 and h'(1) = -2. In point-slope form, the tangent line is y 1 = -2(x 1), or in slope-interept form, y = -2x + 3.
- 4. Find the derivatives of the following functions.
 - (a) $f(x) = \cos(\sin(x^2))$

Solution

We need to use chain rule twice.

$$f'(x) = -\sin(\sin(x^2)) \cdot \cos(x^2) \cdot 2x$$

$$f'(x) = -2x\sin(\sin(x^2)) \cdot \cos(x^2)$$

(b)
$$y = \cos(\frac{x}{2})\sqrt{x^2 + 4}$$

Solution

We need chain rule and product rule.

$$\frac{dy}{dx} = -\sin(\frac{x}{2}) \cdot \frac{1}{2} \cdot \sqrt{x^2 + 4} + \cos\frac{x}{2} \cdot \frac{1}{2}(x^2 + 4)^{-1/2} \cdot 2x$$
$$= -\frac{1}{2}\sin(\frac{x}{2}) \cdot \sqrt{x^2 + 4} + x\frac{\cos\frac{x}{2}}{\sqrt{x^2 + 4}}$$

(c) $\frac{3x^2+1}{x-4}$

Solution

We need quotient rule.

$$\frac{d}{dx}\left(\frac{3x^2+1}{x-4}\right) = \frac{(x-4)(6x) - (3x^2+1)(1)}{(x-4)^2}$$
$$= \frac{3x^2 - 24x - 1}{(x-4)^2}$$

(d) Find $\frac{dy}{dx}$ at (3,2) when $y^2 - 19 = -3xy + x$

Solution		
	2yy' = -3xy' - 3y + 1	
	y'(2y+3x) = -3y+1	
	$y' = \frac{3y+1}{2}$	
	2y+3x	
	$y' = \frac{7}{13}$	

5. Show that the function $f(x) = x^5 - 2x^3 - 2$ has a zero (root/x-intercept) in the interval [0, 2]. Make sure to state which theorem you're using and why it applies.

Solution

f(0) = -2 and f(2) = 14. Since f is continuous on the interval [0,2] and f(0) < 0 and f(2) > 0 then by the Intermediate value theorem, f(x) = 0 for some x in the interval [0,2]

6. Show that the function $f(x) = \frac{3x^3 - 2x^2 + 1}{x - 2}$ is 0 for some real value of x. Make sure to state which theorem you're using and why it applies.

Solution

Note that the question has been altered slightly x -1 0 1	$ \begin{array}{c} f(x) \\ \frac{4}{3} \\ -\frac{1}{2} \\ -2 \end{array} $		
Since $f(-1) < 0$ and $f(0) > 0$ and f is continuous on the interval $(-1, 0)$ (it is continuous on its domain, and its domain contains this interval), then by the Intermediate value theorem $f(x) = 0$ for some x in that interval.			

7. Consider the following function.

$$f(x) = \begin{cases} 2x+3 & x \le -2\\ 1 & -2 < x < 0\\ 0 & x = 0\\ -x+4 & x > 0 \end{cases}$$

(a) Graph the function.

(b) Use the graph to determine $\lim_{x\to 0} f(x)$.

Solution Since $\lim_{x\to 0^-} = 1$ and $\lim_{x\to 0^+} = 4$ then $\lim_{x\to 0}$ does not exist.

(c) Use the graph to determine $\lim_{x \to -2^-} f(x)$.

(d) Determine the intervals on which f(x) is continuous. (Be clear about endpoints).

```
Solution

f is continuous on (-\infty, -2], (-2, 0), and (0, \infty).

Note: This is <u>not</u> a union.
```

(e) Determine the intervals on which f(x) is differentiable. (Be clear about endpoints).

Solution

f is differentiable on $(-\infty, -2)$, (-2, 0), and $(0, \infty)$.