Goal: complete the following problems without using notes or calculators.

1. Calculate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x} \cdot \frac{\sqrt{3 x+4}+2}{\sqrt{3 x+4}+2} \\
& =\lim _{x \rightarrow 0} \frac{3 x+4-4}{x(\sqrt{3 x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{3 x}{x(\sqrt{3 x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{3}{(\sqrt{3 x+4}+2)} \\
& =\frac{3}{(\sqrt{3(0)+4}+2)} \\
& =\frac{3}{4}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 3}\left(\frac{\sin (3-x)}{x-3}+\frac{3 x^{2}+x-2}{x+1}\right)$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 3}\left(\frac{\sin (3-x)}{x-3}+\frac{3 x^{2}+x-2}{x+1}\right) & =\lim _{x \rightarrow 3} \frac{\sin (3-x)}{x-3}+\lim _{x \rightarrow 3} \frac{3 x^{2}+x-2}{x+1} \\
& =\left(\lim _{w \rightarrow 0} \frac{\sin (w)}{-w}\right)+\frac{3(3)^{2}+3-2}{3+1} \\
& =-\left(\lim _{w \rightarrow 0} \frac{\sin (w)}{w}\right)+\frac{28}{4} \\
& =-1+7 \\
& =6
\end{aligned}
$$

(c) $\lim _{x \rightarrow 0} 3 x^{2} \cos \left(\frac{2}{x}\right)$

Solution

$$
\begin{aligned}
-1 & \leq \cos \left(\frac{2}{x}\right) \leq 1 \\
-x^{2} & \leq x^{2} \cos \left(\frac{2}{x}\right) \leq x^{2} \\
-3 x^{2} & \leq 3 x^{2} \cos \left(\frac{2}{x}\right) \leq 3 x^{2}
\end{aligned}
$$

Since $\lim _{x \rightarrow 0}-3 x^{2}=0=\lim _{x \rightarrow 0} 3 x^{2}$, then by the Squeeze theorem, since $\lim _{x \rightarrow 0} 3 x^{2} \cos \left(\frac{2}{x}\right)=0$
(d) $\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}$

Solution

As x is approaching 3 from the left, then $x-3<0$ so $|x-3|=-(x-3)$.

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3} & =\lim _{x \rightarrow 3^{-}} \frac{-(x-3)}{x-3} \\
& =\lim _{x \rightarrow 3^{-}}-1 \\
& =-1
\end{aligned}
$$

(e) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{4 x}$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{4 x} & =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{4 x} \cdot \frac{\frac{3}{4}}{\frac{3}{4}} \\
& =\frac{3}{4} \lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \\
& =\frac{3}{4} \cdot 1=\frac{3}{4}
\end{aligned}
$$

(f) $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{3 x}$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{3 x} & =\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{3 x} \cdot \frac{\frac{2}{3}}{\frac{3}{3}} \\
& =\frac{2}{3} \lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{2 x} \\
& =\frac{2}{3} \cdot 0 \\
& =0
\end{aligned}
$$

2. Use the definition of the derivative to find the derivatives of the following functions.
(a) $f(x)=3 x^{2}-2 x+10$

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-2(x+h)+10-\left(3 x^{2}-2 x+10\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.3 x^{2}+6 x h+3 h^{2}-2 x-2 h+10-3 x^{2}+2 x-10\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.6 x h+3 h^{2}-2 h\right)}{h} \\
& =\lim _{h \rightarrow 0} 6 x+3 h-2 \\
f^{\prime}(x) & =6 x-2
\end{aligned}
$$

(b) $g(x)=\sqrt{3 x-5}$

Solution

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)-5}-\sqrt{3 x-5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3 x+3 h-5}-\sqrt{3 x-5}}{h} \cdot \frac{\sqrt{3 x+3 h-5}+\sqrt{3 x-5}}{\sqrt{3 x+3 h-5}+\sqrt{3 x-5}} \\
& =\lim _{h \rightarrow 0} \frac{(3 x+3 h-5)-(3 x-5)}{h(\sqrt{3 x+3 h-5}+\sqrt{3 x-5})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3 x+3 h-5}+\sqrt{3 x-5})} \\
& =\lim _{h \rightarrow 0} \frac{3}{(\sqrt{3 x+3 h-5}+\sqrt{3 x-5})} \\
& =\frac{3}{2 \sqrt{3 x-5}}
\end{aligned}
$$

(c) $h(x)=\frac{1}{t^{2}}$

Solution

$$
\begin{aligned}
h^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(t+h)^{2}}-\frac{1}{t^{2}}}{h} \\
h^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(t+h)^{2}}-\frac{1}{t^{2}}}{h} \cdot \frac{(t+h)^{2} t^{2}}{(t+h)^{2} t^{2}} \\
& =\lim _{h \rightarrow 0} \frac{t^{2}-(t+h)^{2}}{h(t+h)^{2} t^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 t h+h^{2}}{h(t+h)^{2} t^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 t+h}{(t+h)^{2} t^{2}} \\
& =\frac{-2 t}{t^{4}} \\
h^{\prime}(x) & =\frac{-2}{t^{3}}
\end{aligned}
$$

3. If possible, find the equation of the tangent line to the above curves when $x=1$.

Solution

(a) $f(1)=11$, and $f^{\prime}(1)=4$. In point-slope form, the tangent line is $y-11=$ $4(x-1)$, or in slope-intercept form, $y=4 x+7$.
(b) 1 is not in the domain of g so there is no tangent line.
(c) $h(1)=1$ and $h^{\prime}(1)=-2$. In point-slope form, the tangent line is $y-1=$ $-2(x-1)$, or in slope-interept form, $y=-2 x+3$.
4. Find the derivatives of the following functions.
(a) $f(x)=\cos \left(\sin \left(x^{2}\right)\right)$

Solution

We need to use chain rule twice.

$$
\begin{aligned}
& f^{\prime}(x)=-\sin \left(\sin \left(x^{2}\right)\right) \cdot \cos \left(x^{2}\right) \cdot 2 x \\
& f^{\prime}(x)=-2 x \sin \left(\sin \left(x^{2}\right)\right) \cdot \cos \left(x^{2}\right)
\end{aligned}
$$

(b) $y=\cos \left(\frac{x}{2}\right) \sqrt{x^{2}+4}$

Solution

We need chain rule and product rule.

$$
\begin{aligned}
\frac{d y}{d x} & =-\sin \left(\frac{x}{2}\right) \cdot \frac{1}{2} \cdot \sqrt{x^{2}+4}+\cos \frac{x}{2} \cdot \frac{1}{2}\left(x^{2}+4\right)^{-1 / 2} \cdot 2 x \\
& =-\frac{1}{2} \sin \left(\frac{x}{2}\right) \cdot \sqrt{x^{2}+4}+x \frac{\cos \frac{x}{2}}{\sqrt{x^{2}+4}}
\end{aligned}
$$

(c) $\frac{3 x^{2}+1}{x-4}$

Solution

We need quotient rule.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{3 x^{2}+1}{x-4}\right) & =\frac{(x-4)(6 x)-\left(3 x^{2}+1\right)(1)}{(x-4)^{2}} \\
& =\frac{3 x^{2}-24 x-1}{(x-4)^{2}}
\end{aligned}
$$

(d) Find $\frac{d y}{d x}$ at $(3,2)$ when $y^{2}-19=-3 x y+x$

Solution

$$
\begin{gathered}
2 y y^{\prime}=-3 x y^{\prime}-3 y+1 \\
y^{\prime}(2 y+3 x)=-3 y+1 \\
y^{\prime}=\frac{3 y+1}{2 y+3 x} \\
y^{\prime}=\frac{7}{13}
\end{gathered}
$$

5. Show that the function $f(x)=x^{5}-2 x^{3}-2$ has a zero (root/x-intercept) in the interval $[0,2]$. Make sure to state which theorem you're using and why it applies.

Solution

$f(0)=-2$ and $f(2)=14$. Since f is continuous on the interval $[0,2]$ and $f(0)<0$ and $f(2)>0$ then by the Intermediate value theorem, $f(x)=0$ for some x in the interval $[0,2]$
6. Show that the function $f(x)=\frac{3 x^{3}-2 x^{2}+1}{x-2}$ is 0 for some real value of x. Make sure to state which theorem you're using and why it applies.

Solution

Note that the question has been altered slightly $x \mid f(x)$

$$
\begin{array}{c|c}
-1 & \frac{4}{3} \\
0 & -\frac{1}{2} \\
1 & -2
\end{array}
$$

Since $f(-1)<0$ and $f(0)>0$ and f is continuous on the interval $(-1,0)$ (it is continuous on its domain, and its domain contains this interval), then by the Intermediate value theorem $f(x)=0$ for some x in that interval.
7. Consider the following function.

$$
f(x)= \begin{cases}2 x+3 & x \leq-2 \\ 1 & -2<x<0 \\ 0 & x=0 \\ -x+4 & x>0\end{cases}
$$

(a) Graph the function.
(b) Use the graph to determine $\lim _{x \rightarrow 0} f(x)$.

Solution

Since $\lim _{x \rightarrow 0^{-}}=1$ and $\lim _{x \rightarrow 0^{+}}=4$ then $\lim _{x \rightarrow 0}$ does not exist.
(c) Use the graph to determine $\lim _{x \rightarrow-2^{-}} f(x)$.

Solution

$$
\lim _{x \rightarrow-2^{-}}=-1
$$

(d) Determine the intervals on which $f(x)$ is continuous. (Be clear about endpoints).

Solution

f is continous on $(-\infty,-2],(-2,0)$, and $(0, \infty)$.
Note: This is not a union.
(e) Determine the intervals on which $f(x)$ is differentiable. (Be clear about endpoints).

Solution

f is differentiable on $(-\infty,-2),(-2,0)$, and $(0, \infty)$.

