Goal: complete the following problems without using notes or calculators.

1. Calculate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{3 x+4}-2}{x}$
(b) $\lim _{x \rightarrow 3}\left(\frac{\sin (3-x)}{x-3}+\frac{3 x^{2}+x-2}{x+1}\right)$
(c) $\lim _{x \rightarrow 0} 3 x^{2} \cos \left(\frac{2}{x}\right)$
(d) $\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}$
2. Use the definition of the derivative to find the derivatives of the following functions.
(a) $f(x)=3 x^{2}-2 x+10$
(b) $g(x)=\sqrt{3 x-5}$
(c) $h(x)=\frac{1}{t^{2}}$
3. If possible, find the equation of the tangent line to the above curves when $x=1$.
4. Find the derivatives of the following functions.
(a) $f(x)=\cos \left(\sin \left(x^{2}\right)\right)$
(b) $y=\cos \left(\frac{x}{2}\right) \sqrt{x^{2}+4}$
(c) $\frac{3 x^{2}+1}{x-4}$
(d) Find $\frac{d y}{d x}$ when $y^{2}-19=-3 x y+x$
5. Show that the function $f(x)=x^{5}-2 x^{3}-2$ has a zero (root/x-intercept) in the interval $[0,2]$. Make sure to state which theorem you're using and why it applies.
6. Show that the function $f(x)=\frac{x^{3}-2 x^{2}+1}{x-2}$ is 0 for some real value of x. Make sure to state which theorem you're using and why it applies.
7. Consider the following function.

$$
f(x)= \begin{cases}2 x+3 & x \leq-2 \\ 1 & -2<x<0 \\ 0 & x=0 \\ -x+4 & x>0\end{cases}
$$

(a) Graph the function.
(b) Use the graph to determine $\lim _{x \rightarrow 0} f(x)$.
(c) Use the graph to determine $\lim _{x \rightarrow-2^{-}} f(x)$.
(d) Determine the intervals on which $f(x)$ is continuous. (Be clear about endpoints).
(e) Determine the intervals on which $f(x)$ is differentiable. (Be clear about endpoints).

