1. Find the following limits.
(a) $\lim _{x \rightarrow 3} \frac{1}{x-3}$
(b) $\lim _{x \rightarrow 0} \frac{x^{3}-4 x}{2 x+1}$
(c) $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
(d) $\lim _{x \rightarrow-2} \frac{1}{x^{2}-4}$
(e) $\lim _{x \rightarrow 4} \frac{x^{2}-7 x+12}{2 x-8}$
2. Find $\lim _{x \rightarrow 0^{-}} x^{3} \cos \left(\frac{2}{x}\right)$. (Hint: Squeeze theorem.)
3. Determine where the following function is continuous, and state why.

$$
f(x)=\frac{1}{\sqrt{x+3}}-\frac{x^{2}-1}{x-1}-4 x^{2}
$$

4. Is the following function continuous at $x=0 ? f(x)= \begin{cases}\frac{x-6}{x-3} & x<0 \\ 2 & 0 \leq x=0 \\ \sqrt{4+x^{2}} & x>0\end{cases}$
5. Use the precise definition of a limit (ϵ and δ) to prove the following limit.

$$
\lim _{x \rightarrow 3}(3 x+5)=35
$$

6. Find where the following function is discontinuous, and state the types of discontinuities.

$$
f(x)=\frac{x^{2}-3 x+2}{x^{2}-x-6}
$$

7. Use the Intermediate Value Theorem to show that $h(x)=4 x^{2}-29 x^{2}+25$ has a real root in the inverval $(-3,-2)$.
