1. Find the following limits.
(a) $\lim _{x \rightarrow 3} \frac{1}{x-3}$

Solution

x	$\frac{1}{x-3}$	x	$\frac{1}{x-3}$
2	-1	4	1
2.5	-2	3.5	2
2.9	-10	3.2	10
2.99	-100	3.01	100
2.999	-1000	3.001	1000

We see that $\lim _{x \rightarrow 3^{-}} \frac{1}{x-3}=-\infty$ and $\lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=\infty$, so $\lim _{x \rightarrow 3} \frac{1}{x-3}$ does not exist.
(b) $\lim _{x \rightarrow 0} \frac{x^{3}-4 x}{2 x+1}$

Solution

Rational functions are continuous on their domain.
The domain of $f(x)=\frac{x^{3}-4 x}{2 x+1}$ is $\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$, so f is continuous at 0 .
This means that $\lim _{x \rightarrow 0} f(x)=f(0)=0$
(c) $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$

Solution

$$
\frac{\frac{1}{x}-\frac{1}{3}}{x-3}=\frac{\frac{1}{x}-\frac{1}{3}}{x-3} \cdot \frac{3 x}{3 x}=\frac{3-x}{3 x(x-3}=\frac{-1}{3 x}
$$

So $\frac{\frac{1}{x}-\frac{1}{3}}{x-3}=\frac{-1}{3 x}$ when $x \neq 3$ so $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}=\lim _{x \rightarrow 3} \frac{-1}{3 x}=\frac{-1}{9}$
(Note: $\frac{-1}{3 x}$ is continuous at $x=3$)
(d) $\lim _{x \rightarrow-2} \frac{1}{x^{2}-4}$

Solution

x	$\frac{1}{x^{2}-4}$	x	$\frac{1}{x^{2}-4}$
-3	.2	-1	-.3
-2.5	≈ 0.44	-1.5	≈-0.57
-2.1	≈ 2.43	-1.9	≈-2.56
-2.01	≈ 24.9	-1.99	≈-25
-2.001	≈ 249.9	-1.999	≈-250

We see that $\lim _{x \rightarrow-2^{-}} \frac{1}{x^{2}-4}=\infty$ and $\lim _{x \rightarrow-2^{+}} \frac{1}{x^{2}-4}=-\infty$, so $\lim _{x \rightarrow-2} \frac{1}{x^{2}-4}$ does not exist.
(e) $\lim _{x \rightarrow 4} \frac{x^{2}-7 x+12}{2 x-8}$

Solution

$$
\frac{x^{2}-7 x+12}{2 x-8}=\frac{(x-3)(x-4)}{2(x-4)}=\frac{x-3}{2} \text { when } x \neq 4, \text { so } \lim _{x \rightarrow 4} \frac{x^{2}-7 x+12}{2 x-8}=\lim _{x \rightarrow 4} \frac{x-3}{2}=\frac{1}{2} .
$$

2. Find $\lim _{x \rightarrow 0^{-}} x^{3} \cos \left(\frac{2}{x}\right)$. (Hint: Squeeze theorem.)

Solution

First, notice that we have $-1 \leq \cos \left(\frac{2}{x}\right) \leq 1$ for all $x \neq 0$. Since we are looking at the left hand limit at 0 , consider $x<0$. Since $x^{3}<0$ we have that

$$
\begin{gathered}
-1 \cdot x^{3} \geq x^{3} \cdot \cos \left(\frac{2}{x}\right) \geq 1 \cdot x^{3} \\
-x^{3} \geq x^{3} \cos \left(\frac{2}{x}\right) \geq x^{3} \\
\lim _{x \rightarrow 0^{-}} x^{3}=0=\lim _{x \rightarrow 0^{-}}-x^{3}
\end{gathered}
$$

Therefore, by the squeeze theorem, it must be that $\lim _{x \rightarrow 0^{-}} x^{3} \cos \left(\frac{2}{x}\right)=0$.
3. Determine where the following function is continuous, and state why.

$$
f(x)=\frac{1}{\sqrt{x+3}}-\frac{x^{2}-1}{x-1}-4 x^{2}
$$

Solution

Let $F(x)=\frac{1}{\sqrt{x+3}}, G(x)=\frac{x^{2}-1}{x-1}, H(x)=4 x^{2} . f(x)$ is continuous when F, G, and H are all continuous. Since they are all root functions, polynomials, or rational functions, then they are continuous on their domains.
$F(x)$ is continuous on $(-3, \infty)$
$G(x)$ is continuous on $(\infty, 1) \cup(1, \infty)$
$H(x)$ is coninuous on $(-\infty, \infty)$
Thus, $f(x)$ is continuous on $(-3,1) \cup(1, \infty)$.
4. Is the following function continuous at $x=0 ? f(x)= \begin{cases}\frac{x-6}{x-3} & x<0 \\ 2 & 0 \leq x=0 \\ \sqrt{4+x^{2}} & x>0\end{cases}$

Solution

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x-6}{x-3}=2 \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \sqrt{4+x^{2}}=2
\end{gathered}
$$

So $\lim x \rightarrow 0 f(x)=2=f(0)$ so f is continuous at 0 .
5. Use the precise definition of a limit $(\epsilon$ and $\delta)$ to prove the following limit.

$$
\lim _{x \rightarrow 10}(3 x+5)=35
$$

Solution

Proof. Let $\epsilon>0$ and $\delta=\epsilon / 3$. Then if $|x-10|<\delta$, and $f(x)=3 x+5$ we have the following.

$$
\begin{aligned}
|f(x)-35| & =|3 x+5-35| \\
& =|3 x-30| \\
& =3|x-10| \\
& <3 \delta=\epsilon
\end{aligned}
$$

Thus, for $\epsilon>0 \exists \delta>0$ such that when $|x-10|<\delta,|f(x)-35|<\epsilon$, hence $\lim _{x \rightarrow 10}(3 x+5)=35$
6. Find where the following function is discontinuous, and state the types of discontinuities.

$$
f(x)=\frac{x^{2}-3 x+2}{x^{2}-x-6}
$$

Solution

We know that rational functions are continuous on their domains. The domain of $f(x)$ is $(-\infty,-2) \cup(-2,3) \cup(3, \infty)$, so we have discontinuities at $x=-2$ and $x=3$. By finding the limits as x approaches the discontinuities, we can see that they are both infinite discontinuities.
7. Use the Intermediate Value Theorem to show that $h(x)=4 x^{4}-29 x^{2}+25$ has a real root in the inverval $(-3,-2)$.

Solution

$$
h(-3)=88>0 \quad h(-2)=-27<0
$$

By the Intermediate Value Theorem, $h(x)=0$ for some $x \in(-3,-2)$

