- 1. Find the following limits.
 - (a) $\lim_{x \to 3} \frac{1}{x-3}$

Solution

.	1		1
X	$\overline{x-3}$	X	$\overline{x-3}$
2	-1	4	1
2.5	-2	3.5	2
2.9	-10	3.2	10
2.99	-100	3.01	100
2.999	-1000	3.001	1000

We see that $\lim_{x \to 3^-} \frac{1}{x-3} = -\infty$ and $\lim_{x \to 3^+} \frac{1}{x-3} = \infty$, so $\lim_{x \to 3} \frac{1}{x-3}$ does not exist.

(b) $\lim_{x \to 0} \frac{x^3 - 4x}{2x + 1}$

Solution

Rational functions are continuous on their domain. The domain of $f(x) = \frac{x^3 - 4x}{2x+1}$ is $(-\infty, -\frac{1}{2}) \cup (\frac{1}{2}, \infty)$, so f is continuous at 0. This means that $\lim_{x \to 0} f(x) = f(0) = 0$

(c) $\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$

Solution

$$\frac{\frac{1}{x} - \frac{1}{3}}{x - 3} = \frac{\frac{1}{x} - \frac{1}{3}}{x - 3} \cdot \frac{3x}{3x} = \frac{3 - x}{3x(x - 3)} = \frac{-1}{3x}$$

So $\frac{\frac{1}{x} - \frac{1}{3}}{x - 3} = \frac{-1}{3x}$ when $x \neq 3$ so $\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3} = \lim_{x \to 3} \frac{-1}{3x} = \frac{-1}{9}$
(Note: $\frac{-1}{3x}$ is continuous at $x = 3$)

(d) $\lim_{x \to -2} \frac{1}{x^2 - 4}$

(e)
$$\lim_{x \to 4} \frac{x^2 - 7x + 12}{2x - 8}$$

Solution

$$\frac{x^2 - 7x + 12}{2x - 8} = \frac{(x - 3)(x - 4)}{2(x - 4)} = \frac{x - 3}{2} \text{ when } x \neq 4, \text{ so } \lim_{x \to 4} \frac{x^2 - 7x + 12}{2x - 8} = \lim_{x \to 4} \frac{x - 3}{2} = \frac{1}{2}.$$

2. Find $\lim_{x\to 0^-} x^3 \cos(\frac{2}{x})$. (Hint: Squeeze theorem.)

Solution

First, notice that we have $-1 \le \cos(\frac{2}{x}) \le 1$ for all $x \ne 0$. Since we are looking at the left hand limit at 0, consider x < 0. Since $x^3 < 0$ we have that

$$-1 \cdot x^3 \ge x^3 \cdot \cos(\frac{2}{x}) \ge 1 \cdot x^3$$
$$-x^3 \ge x^3 \cos(\frac{2}{x}) \ge x^3$$
$$\lim_{x \to 0^-} x^3 = 0 = \lim_{x \to 0^-} -x^3$$

Therefore, by the squeeze theorem, it must be that $\lim_{x\to 0^-} x^3 \cos(\frac{2}{x}) = 0.$

3. Determine where the following function is continuous, and state why.

$$f(x) = \frac{1}{\sqrt{x+3}} - \frac{x^2 - 1}{x-1} - 4x^2$$

Solution

Let $F(x) = \frac{1}{\sqrt{x+3}}$, $G(x) = \frac{x^2-1}{x-1}$, $H(x) = 4x^2$. f(x) is continuous when F, G, and H are all continuous. Since they are all root functions, polynomials, or rational functions, then they are continuous on their domains. F(x) is continuous on $(-3, \infty)$

G(x) is continuous on $(\infty, 1) \cup (1, \infty)$

H(x) is continuous on $(-\infty,\infty)$

Thus, f(x) is continuous on $(-3, 1) \cup (1, \infty)$.

4. Is the following function continuous at x = 0? $f(x) = \begin{cases} \frac{x-6}{x-3} & x < 0\\ 2 & 0 \le x = 0\\ \sqrt{4+x^2} & x > 0 \end{cases}$

Solution
$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x - 6}{x - 3} = 2$
$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sqrt{4 + x^2} = 2$
So $\lim x \to 0 f(x) = 2 = f(0)$ so f is continuous at 0.

5. Use the precise definition of a limit (ϵ and δ) to prove the following limit.

$$\lim_{x \to 10} (3x + 5) = 35$$

Solution

Proof. Let $\epsilon > 0$ and $\delta = \epsilon/3$. Then if $|x - 10| < \delta$, and f(x) = 3x + 5 we have the following.

$$|f(x) - 35| = |3x + 5 - 35|$$

= |3x - 30|
= 3|x - 10|
< 3\delta = \epsilon

Thus, for $\epsilon > 0 \ \exists \delta > 0$ such that when $|x - 10| < \delta$, $|f(x) - 35| < \epsilon$, hence $\lim_{x \to 10} (3x + 5) = 35$

6. Find where the following function is discontinuous, and state the types of discontinuities.

$$f(x) = \frac{x^2 - 3x + 2}{x^2 - x - 6}$$

Solution

We know that rational functions are continuous on their domains. The domain of f(x) is $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$, so we have discontinuities at x = -2 and x = 3. By finding the limits as x approaches the discontinuities, we can see that they are both infinite discontinuities.

7. Use the Intermediate Value Theorem to show that $h(x) = 4x^4 - 29x^2 + 25$ has a real root in the inverval (-3, -2).

h(-3) = 88 > 0 h(-2) = -27 < 0

By the Intermediate Value Theorem, h(x) = 0 for some $x \in (-3, -2)$