1. Evaluate the difference quotient for the given function. Simplify your answer.

$$
f(x)=x^{2}-4 x+5 \quad \frac{f(x+h)-f(x)}{h}
$$

Solution

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\left((x+h)^{2}-4(x+h)+5\right)-\left(x^{2}-4 x+5\right)}{h} \\
& =\frac{x^{2}+2 x h+h^{2}-4 x-4 h+f-x^{2}+4 x-5}{h} \\
& =\frac{2 x h+h^{2}-4 h}{h} \\
& =2 x+h-4
\end{aligned}
$$

2. Find the domain of the following functions.
(a) $f(x)=\frac{x+6}{x^{2}-3 x-4}$
(b) $f(x)=\sqrt{3-\sqrt{x}}$
(c) $g(x)=\sqrt[3]{x-8}$

Solutions

(a) Need to make sure we are not dividing by zero.
$x^{2}-3 x-4=(x-4)(x+1)=0$ if $x=4$ or $x=-1$
Domain: $(-\infty,-1) \cup(-1,4) \cup(4, \infty)$
(b) Need to make sure we aren't taking the square root of a negative number. First, we see that $x \geq 0$. Next, we have that

$$
\begin{aligned}
3-\sqrt{x} & \geq 0 \\
3 & \geq \sqrt{x} \\
9 & \geq x
\end{aligned}
$$

Domain: $[0,9]$
(c) Domain: $(-\infty, \infty)$
3. Find $g \circ f$ and $f \circ g$ and their domains.

$$
g(x)=\sqrt{x+3} \quad f(x)=x+\frac{1}{x}
$$

Solution

$$
(f \circ g)(x)=\sqrt{x+3}+\frac{1}{\sqrt{x+3}}
$$

For the domain we need to make sure $x+3 \geq 0$ and $\sqrt{x+3} \neq 0$.
Domain: $(-3, \infty)$

$$
(g \circ f)(x)=\sqrt{x+\frac{1}{x}+3}
$$

For the domain we need to make sure we are taking the square root of a nonnegative number and not dividing by 0 , so we are solving $x+\frac{1}{x}+3=\frac{x^{2}+3 x+1}{x} \geq 0$. This is harder than I intended. It's okay for $x^{2}+3 x+1$ to be negative as long as x is negative as well. Notice that $x^{2}+3 x+1 \leq 0$ if and only if $\frac{-3-\sqrt{5}}{2} \leq x \leq \frac{-3+\sqrt{5}}{2} \leq 0$. So if x is positive, so is the polynomial, hence we get the following domain.

$$
\left(\frac{-3-\sqrt{5}}{2}, \frac{-3+\sqrt{5}}{2}\right) \cup(0, \infty)
$$

4. Find two functions $f(x)$ and $g(x)$ such that $(f \circ g)(x)=x^{2}+4 x+2$

Possible Solutions

$$
\begin{gathered}
f(x)=x+2 \quad g(x)=x^{2}+4 \\
\text { or } \\
f(x)=x^{2}-2 \quad g(x)=x+2
\end{gathered}
$$

5. If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height in feet t seconds later is given by $y=40 t-16 t^{2}$. Find the average velocity for the time period beginning when $t=2$ and lasting
(i) 0.5 seconds
(ii) 0.1 seconds
(iii) 0.05 seconds
(iv) 0.01 seconds

Then, estimate the instantaneous velocity when $t=2$.

Solution

Let $f(t)=40 t-16 t^{2}$. The average velocity for the time interval lasting 0.5 seconds is calculated by

$$
\frac{f(2.5)-f(2)}{.5}=-32
$$

Doing this for all the values we have
(i) 0.5 seconds \rightarrow Avg Velocity is $-32 \mathrm{ft} / \mathrm{s}$
(ii) 0.1 seconds \rightarrow Avg Velocity is $-25.6 \mathrm{ft} / \mathrm{s}$
(iii) 0.05 seconds \rightarrow Avg Velocity is $-24.8 \mathrm{ft} / \mathrm{s}$
(iv) 0.01 seconds \rightarrow Avg Velocity is $-24.16 \mathrm{ft} / \mathrm{s}$

We can estimate the instantaneous velocity to be $-24 \mathrm{ft} / \mathrm{s}$.
6. A tank holds 1000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the following table show the volume V of the water remaining in the tank (in gallons) after t minutes.

t	V
5	694
10	444
15	250
20	111
25	28
30	0

If P is the point $(15,250)$ on the graph of V, find the slopes of the secant lines $P Q$ when Q is a point on the graph with $t=10$ and $t=20$. Use these to estimate the slope of the tangent line at P by averaging the slopes of the two secant lines.

Solution

Slope of the secant line between $t=10$ and $t=15$:

$$
\frac{250-444}{5}=\frac{-194}{5}
$$

Slope of the secant line between $t=15$ and $t=20$:

$$
\frac{111-250}{5}=\frac{-139}{5}
$$

Average those two slopes:

$$
\left(\frac{-194}{5}+\frac{-139}{5}\right) \frac{1}{2}=\frac{-333}{10}=-33.3 \mathrm{gal} / \mathrm{min}
$$

