1. We say that a function f is the *inverse* of a function g if

$$(f \circ g)(x) = x$$
 and $(g \circ f)(x) = x$.

Verify that the given functions are inverses of each other.

(a)
$$f(x) = 2x - 8$$
, $g(x) = \frac{1}{2}x + 4$
(b) $f(x) = \sqrt[3]{x} + 1$, $g(x) = (x - 1)^3$
(c) $f(x) = \frac{1}{x + 1}$, $g(x) = \frac{1}{x} - 1$

- 2. For each f, compute f^{-1} . Then find the range of f by finding the domain of f^{-1} .
 - (a) f(x) = 4x 1(b) $f(x) = 2x^3 - 1$ (c) $f(x) = \frac{2}{x - 3}$ (d) $f(x) = \frac{x - 5}{x + 2}$

3. Determine whether each function is one-to-one.

- (a) f(x) = 2(b) f(x) = 3x - 1(c) $f(x) = x^2$ (d) $f(x) = x^3$ (e) $f(x) = \sqrt{x}$ (f) $f(x) = \sqrt[3]{x}$ (g) f(x) = |x|(h) $f(x) = \frac{1}{x}$ (i) $f(x) = \frac{1}{x^2}$
- 4. For each function in #3 that was one-to-one, compute its inverse.
- 5. Let f(x) = 2x 1 and $g(x) = \frac{1}{x-2}$
 - (a) Find $(f \circ g)^{-1}(x)$
 - (b) Find $(g \circ f)^{-1}(x)$