1. Let f(x) = 3x + 1, $g(x) = x^2 - 2x - 4$, and $h(x) = \frac{x}{4}$. Compute the following and simplify.

- (a) (f+q)(x)Solution: 3 Solution: $x^2 + x - 3$ (g) $\left(\frac{f}{q}\right)(0)$ (b) (f - g)(x)**Solution:** $-x^2 + 5x + 5$ Solution: $-\frac{1}{4}$ (c) (f-g)(10)(h) $(f \circ h)(x)$ Solution: $\frac{3x}{4} + 1$ Solution: -45(d) (fg)(x)(i) $(h \circ f)(x)$ **Solution:** $3x^3 - 5x^2 - 14x - 4$ Solution: $\frac{3x+1}{4}$
- (e) (hf)(x)(j) $\frac{f(b) - f(a)}{b - a}$ Solution: $\frac{3x^2+x}{4}$ (f) (fg)(-1) + (hf)(1)Solution: 3

2. Let
$$f(x) = 5x^2$$
, $g(x) = \frac{1}{1-2x}$, and $h(x) = |x|$.
Compute the following and simplify.

(a) $(g \circ f)(x)$ (c) $(h \circ f)(x)$ Solution: $\frac{1}{1-10r^2}$ Solution: $5x^2$ (d) $(f \circ g \circ f)(x)$ Solution: $\frac{5}{(1-10x^2)^2}$ (b) $(f \circ g)(x)$ Solution: $\frac{5}{(1-2x)^2}$

3. Write each function as a composition of two simpler functions. (Answers may vary.)

(a) $\sqrt{2x+1}$ **Possible Solution:** $f(x) = \sqrt{x+1}, q(x) = 2x$ (b) $\frac{1}{x-4}$ Possible Solution: $f(x) = \frac{1}{x}, g(x) = x - 4$ (c) $\frac{x^2 - 3}{x^2 - 1}$ **Possible Solution:** $f(x) = \frac{x-3}{x-1}, g(x) = x^2$ (d) $16x^2$ **Possible Solution:** $f(x) = 4x, q(x) = 4x^2$

4. Write each function as a composition of three simpler functions. (Answers may vary.)

(a) $(5x-2)^3$ **Possible Solution:** $f(x) = x^3$, q(x) = x - 2, h(x) = 5x(b) $\frac{2}{\sqrt[3]{x+4}}$ Possible Solution: $f(x) = 2x, g(x) = \frac{1}{\sqrt[3]{x}}, h(x) = x + 4$