The more that you read, the more things you will know. The more that you learn, the more places you'll go. -Dr. Seuss

Know the following Laws of Exponents and Radicals. Let a, b, m, n be real numbers. Then:

- $(1) \ a^{0} = 1 \text{ (when } a \neq 0)$ $(2) \ a^{m} \cdot a^{n} = a^{m+n}$ $(3) \ \frac{a^{m}}{a^{n}} = a^{m-n} \text{ (when } a \neq 0)$ $(4) \ (a^{m})^{n} = a^{m \cdot n}$ $(5) \ (a \cdot b)^{n} = a^{n} \cdot b^{n}$ $(6) \ \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}} \text{ (when } b \neq 0)$ $(7) \ \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} \text{ (when } a, b \neq 0)$ $(8) \ a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m} = \sqrt[n]{a^{m}}$ $(9) \ \sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $(10) \ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
 - 1. Simplify the expressions so that they have only positive exponents.

(a)
$$\frac{x^{-1}y^2}{y^3x^{-2}}$$
 (d) $\frac{x^4y^2}{x^{-3}} \div \frac{x^3y^{-2}}{y^5}$
(b) $\frac{(x^3y^{-2})^6}{(y^{-5}x^{-2})^{-3}}$ (e) $\left(\frac{x^{-2}}{x^{-3}}\right)^{-4}$
(c) $\frac{(x^2y^{-3})^{-2}}{(y^{-3}x^{-2})^2}$ (f) $(x^{-1}+y^{-1})^{-1}$

2. Simplify the expressions.

(a)
$$\sqrt[3]{\frac{8}{27}}$$

(b) $32^{\frac{3}{5}}$
(c) $(-32)^{\frac{3}{5}}$
(d) $0.001^{\frac{2}{3}}$
(e) $\frac{(2^{\frac{1}{3}})^{\frac{2}{5}}}{\sqrt[5]{2}}$
(f) $\frac{x^{\frac{1}{3}}y^{\frac{1}{2}}}{\sqrt[3]{x^2y}}$
(g) $(xyz + zyx + yxz)^3$
(h) $(-8)^{\frac{5}{3}}$
(i) $(-8)^{-\frac{5}{3}}$
(j) $\frac{(2x^2 + 3)^{-\frac{5}{4}}(2x^2 + 3)^{\frac{5}{4}}(x^2 + 1)^{-\frac{1}{4}}}{(x^2 + 1)^{\frac{7}{4}}}$