Know the following Rules of Logarithms.

(1)
$$\log_a x = y \iff a^y = x$$

$$(5) \log_a M^r = r \log_a M$$

$$(2) \ a^{\log_a M} = M$$

(6)
$$\log_a(M \cdot N) = \log_a M + \log_a N$$

$$(3) \log_a a = 1$$

(7)
$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

(4)
$$\log_a 1 = 0$$

(8)
$$\log_a M = \frac{\log_b M}{\log_b a}$$
 (Change of Base)

Avoid these Common Mistakes.

•
$$\log_a(M-N) = \frac{\log_a M}{\log_a N}$$

•
$$\log_a(M+N) = \log_a M + \log_a N$$

$$\bullet \ \frac{\log_b M}{\log_b a} = \frac{M}{a}$$

1. Simplify.

- (a) $\log_{10} 10^2$
- (c) $\log_2 8^{4/3}$
- (e) $4^{\log_4 5} \cdot 5^{\log_5 4}$

(b) $\ln e^4$

- (d) $\log_3 3\sqrt{3}$
- 2. Use the change of base formula.
 - (a) Express $\log_3 2$ in terms of log base 10.
 - (b) Express $\log_2 5$ in terms of the natural \log .
- 3. Combine into a single logarithm.
 - (a) $3\log_{10} x + \log_{10} y$

(d) $\log_b 2x + 2\log_b y + \log_b z$

- (b) $\frac{1}{2}\log_2 y \log_2 x$
- (c) $\ln(x+1) \ln(x-1)$

- (e) $\ln 2 \ln y + \frac{1}{2} \ln(x+y) \frac{1}{3} \ln 27$
- 4. Write as a sum or difference of logarithms without any exponents. Hint: First factor $x^2 - y^2$ in (c) and $x^2 - 1$ in (e).
 - (a) $\log_{10} \frac{2x^3}{y^4}$
- (e) $\log_b \sqrt[3]{\frac{x^2-1}{x^4}}$

- (b) $\ln 5x^2y^3$
- (c) $\log_2(x^2 y^2)$ (d) $\log_a \frac{1}{\sqrt{x^2 + y^2}}$