- 1. List any roots, their degree, and the behavior of the graph at the roots.
 - Find the y-intercept, if possible.
 - List all asymptotes, and the degree of all vertical asymptote.
 - Find any points where the graph intersects a horizontal or oblique asymptote.
 - Find the leading term and use it to determine the long term behavior.
 - Graph the function and label your axes

(a)
$$f(x) = \frac{x^2}{(x-1)}$$

- Roots: x = 0 degree 2, touches
- y-int: (0,0)
- VA: x = 1 degree 1
- HA/OA: y = x + 1, Does not intersect
- Leading term and behavior: $x, f(x) \to \infty$ as $x \to \infty, f(x) \to -\infty$ as $x \to -\infty$.

(b)
$$p(x) = -2x(x+2)(x-1)^2$$

- Roots: x = 0, degree 1, x = -2, degree 1, x = 1, degree 2
- y-int:(0,0)
- VA: None
- HA/OA: None
- Leading term and behavior: $-2x^4$, $p(x) \to -\infty$ as $x \to \pm \infty$

(c)
$$h(x) = \frac{3x-2}{x+2}$$

- Roots: $x = \frac{2}{3}$, degree 1
- y-int: (0, -1)
- VA: x = -2, degree 1
- HA/OA: y = 3, does not intersect
- Leading term and behavior: $3, h(x) \to 3 \text{ as } x \to \pm \infty.$

(d)
$$g(x) = \frac{(x+1)^2}{(x-3)^2(x+2)}$$

- Roots: x = -1, degree 2
- y-int: $(0, \frac{1}{18})$
- VA: x = 3, degree 2, x = -2, degree 1
- HA/OA: y = 0, intersects at root
- Leading term and behavior: $\frac{1}{x}$, $g(x) \to 0$ as $x \to \pm \infty$

- (e) $p(x) = (5-x)^3(x+2)^2$
 - Roots: x = 5, degree 3, x = -2, degree 2
 - y-int: (0,500)
 - VA: None
 - HA/OA: None
 - Leading term and behavior: $-x^5$, $p(x) \to -\infty$ as $x \to \infty$ and $p(x) \to \infty$ as $x \to -\infty$
- 2. Simplify.
 - (a) $\log_3 27^{\frac{1}{3}}$ 1
 - (b) $\log_2 8^2$ 6
 - (c) $\log_{10} 10$ 1
 - (d) $\ln e^{\frac{1}{2}}$
 - (e) $3^{\log_3 10}$ 10
 - (f) Challenge Question: $\frac{\log_2 25}{\log_2 5}$ 2
- 3. Write as a sum or difference of logarithms without any exponents.
 - (a) $\log_3(x^2y^3)$ $2\log_3 x + 3\log_3 y$
 - (b) $\log_{10} \left(\frac{\sqrt{x}}{10} \right) = \frac{1}{2} \log_{10} x 1$
 - (c) $\ln(x^2 4)$ $\ln(x 2) + \ln(x + 2)$
- 4. Write as a single logarithm
 - (a) $2 \ln x + \ln y \quad \ln x^2 y$
 - (b) $\frac{1}{2} (\ln x \ln 4)$ $\ln \left(\frac{\sqrt{x}}{2} \right)$
 - (c) $3\log_2 x + \log_2 y \quad \log_2 x^3 y$