- 1. List any roots, their degree, and the behavior of the graph at the roots.
 - Find the y-intercept, if possible.
 - List all asymptotes, and the degree of all vertical asymptote.
 - Find any points where the graph intersects a horizontal or oblique asymptote.
 - Find the leading term and use it to determine the long term behavior.
 - Graph the function and label your axes

(a)
$$f(x) = \frac{x^2}{(x-1)}$$

(b) $p(x) = -2x(x+2)(x-1)^2$
(c) $h(x) = \frac{3x-2}{x+2}$
(d) $g(x) = \frac{(x+1)^2}{(x-3)^2(x+2)}$
(e) $p(x) = (5-x)^3(x+2)^2$

2. Simplify.

- (a) $\log_3 27^{\frac{1}{3}}$
- (b) $\log_2 8^2$
- (c) $\log_{10} 10$
- (d) $\ln e^{\frac{1}{2}}$
- (e) $3^{\log_3 10}$
- (f) Challenge Question: $\frac{\log_2 25}{\log_2 5}$
- 3. Write as a sum or difference of logarithms without any exponents.
 - (a) $\log_3(x^2y^3)$ (b) $\log_{10}\left(\frac{\sqrt{x}}{10}\right)$ (c) $\ln(x^2 - 4)$
- 4. Write as a single logarithm
 - (a) $2\ln x + \ln y$

(b)
$$\frac{1}{2}(\ln x - \ln 4)$$

(c) $3\log_2 x + \log_2 y$