Counting: Fundamental Counting Principle

- 1. Evalute the following expressions without a calculator.
 - (a) $\frac{5!}{4!}$ 5
 - (b) $\frac{9!}{3!(9-3)!}$ 84
 - (c) $\frac{12!}{8!4!}$ 495
 - (d) $\frac{37!}{35!2!}$ 666
- 2. Find the number of distinguishable arrangements of the letters of each word or phrase.
 - (a) BANANA60
 - (b) MISSISSIPPI34650
 - (c) JIGGLYPUFF907200
- 3. After the rolling of the first ball of a frame in a game of 10-pin bowling, how many different pin configurations are possible? (Assume they are all physically possible.) 2^{10}
- 4. The zip code at UH Manoa is 96822. How many different ZIP codes can be formed using only these 5 digits? Many solutions due to poor wording.
- 5. Determine the number of ways to mark your answer sheet for each test.
 - (a) A seven question true-or-false test.2⁷
 - (b) A nine-question multiple choice test with 4 answer choices for each question. 4^9
- 6. Until 1995, the rules for three-digit area codes in the US were that the first digit could not be 0 or 1, the second digit had to be 0 or 1, and the third digit had no restrictions. How many area codes are possible? If the second restriction is removed, how many area codes are possible? 160,800