Recall the Rules of Exponents.

(1)
$$a^0 = 1$$
 (when $a \neq 0$)

$$(2) \ a^m \cdot a^n = a^{m+n}$$

(3)
$$\frac{a^m}{a^n} = a^{m-n}$$
 (when $a \neq 0$)

$$(4) (a^m)^n = a^{m \cdot n}$$

$$(5) (a \cdot b)^n = a^n \cdot b^n$$

(6)
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 (when $b \neq 0$)

(7)
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n \text{ (when } a, b \neq 0\text{)}$$

Recall the Rules of Logarithms.

(1)
$$\log_a x = y \iff a^y = x$$

$$(2) \ a^{\log_a M} = M$$

$$(3) \log_a a = 1$$

(4)
$$\log_a 1 = 0$$

$$(5) \log_a M^r = r \log_a M$$

(6)
$$\log_a(M \cdot N) = \log_a M + \log_a N$$

(7)
$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

(8)
$$\log_a M = \frac{\log_b M}{\log_b a}$$
 (Change of Base)

1. Solve for x. (Remember that you cannot put a negative or zero into a log, so check that your solutions are valid.)

(a)
$$\log_{10}(x+5) = 2$$

 $x = 95$

(b)
$$\log_2(\log_2 x) = 1$$

 $x = 4$

(c)
$$\ln(\ln x) = 0$$

 $x = e$

(d)
$$\log_2(\log_4 x) = -1$$

(e)
$$\log_6(x^2 - 5x) = 1$$

 $x = \{-1, 6\}$

(f)
$$\log_2 x + \log_2(x+1) = 1$$

 $x = 1$

(g)
$$\log_{10}(x+1) = 2\log_{10}(x-1)$$

 $x = 3$

(h)
$$\ln(x-4) + \ln(x+1) = \ln 6$$

 $x = 5$

2. Solve for x.

- (a) $2^x = 32$ x = 5
- (b) $3^x = 3^{1-2x}$ $x = \frac{1}{3}$
- (c) $3^x = 9^{1-2x}$ $x = \frac{2}{5}$
- (d) $a^{2x} = a^8$ x = 4
- (e) $e^{(x+2)(x-3)} = 1$ $x = \{-2, 3\}$
- (f) $2^{x-1} = 5$ $x = \frac{\ln 5}{\ln 2} + 1$
- (g) $e^{3x+1} = 6$ $x = \frac{\ln 6 1}{3}$ (h) $7^{2x} = 3^{x+1}$ $x = \frac{\ln 3}{2 \ln 7 \ln 3}$